

Statistics

Lecture 1

Feb 19 8:47 AM

Some Math Review:

1) Reduce $\frac{75}{120} = \frac{3 \cdot 25}{3 \cdot 40} = \frac{25}{40} \cancel{- \frac{5 \cdot 5}{5 \cdot 8}} = \frac{5}{8}$

TI-83 or 84
 $75 \div 120$ [Math] [1: \blacktriangleright Frac] [Enter]

1) $\frac{5}{8}$

2) write .025 in

a) Reduced fraction

.025 [Math] [1: \blacktriangleright Frac] [Enter]

2a) $\frac{1}{40}$

b) Percent notation

.025 (100)% = 2.5%

2b) 2.5%

Jan 6-4:42 PM

I surveyed 120 students, and 8.5% of them were nursing majors. How many were nursing majors? If decimal, round-up.

What is 8.5% of 120?

$$x = .085(120)$$

$$= 10.2 \approx \boxed{11}$$

11

Jan 6-4:48 PM

! Factorial

$$0! = 1$$

$$1! = 1$$

$$2! = 2 \cdot 1 = 2$$

$$3! = 3 \cdot 2 \cdot 1 = 6$$

$$n! = n(n-1)(n-2)(n-3) \cdots 3 \cdot 2 \cdot 1$$

Find 6!

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$= \boxed{720}$$

Simplify

$$\frac{8!}{5! \cdot 3!} = \frac{8 \cdot 7 \cdot 6 \cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot 1}{\cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot 1 \cdot \cancel{3} \cdot \cancel{2} \cdot 1}$$

$$= \boxed{56}$$

Jan 6-4:52 PM

use your calc to find

$$\frac{72 - 65}{\frac{16}{\sqrt{25}}} = \frac{7}{\frac{16}{5}} = \frac{7}{3.2} = 2.1875$$

Round to

whole $\rightarrow 2$

1-dec. $\rightarrow 2.2$

2-dec. $\rightarrow 2.19$

$$1.645 \cdot \sqrt{\frac{(.8)(.2)}{100}}$$

$$= 1.645 \cdot \sqrt{\frac{.16}{100}} = 1.645 \cdot \frac{.4}{10}$$

$$\begin{array}{rcl} 1\text{-Dec} & .1 \\ 2\text{-Dec} & .07 \end{array} \quad = 1.645 (.04) = .0658$$

Jan 6-4:55 PM

In a regular standard deck of playing cards, what % of them are face cards?

52 Cards, 12 face cards

12 is what % of 52?

$$12 = \frac{P}{100} \cdot 52 \rightarrow P = \frac{12}{.52} = 23.076\ldots$$

$$12 = .52 P \quad \approx 23\%$$

Jan 6-5:01 PM

Given $y = 2.5x - 10$

find y when $x = 4$.

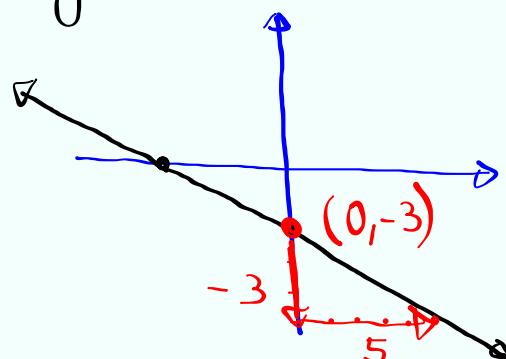
$y = 2.5(4) - 10 = \boxed{0}$

Do not use 0 for zero.

find x when $y = 30$.

$30 = 2.5x - 10$

$40 = 2.5x$


$x = \frac{40}{2.5}$

$x = 16$

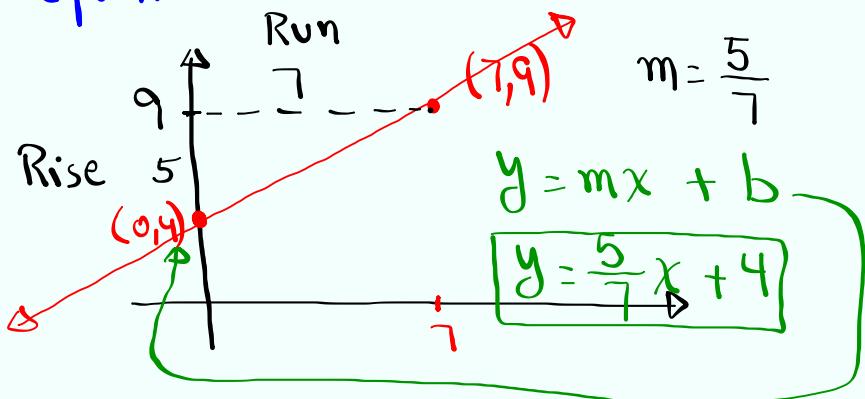
Jan 6-5:06 PM

Graph $3x + 5y = -15$

x	y
0	-3
-5	0

Isolate y

$$5y = -3x - 15$$

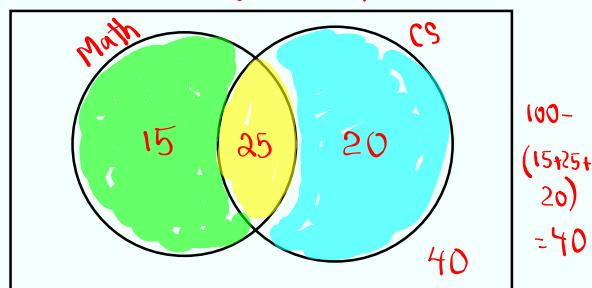

$$y = -\frac{3}{5}x - \frac{15}{5}$$

$$y = -\frac{3}{5}x - 3$$

Slope - Int y -Int $(0, -3)$
 Slope $-\frac{3}{5}$

Jan 6-5:09 PM

Plot $(0, 4)$ & $(7, 9)$,
find equation of the line that contains them.



Jan 6-5:13 PM

I surveyed 100 students. 25 were
math and CS majors. 15 were math
only majors. 20 were CS only majors.

Organize this in a Venn Diagram.

100 students

SG 1 ✓

Jan 6-5:17 PM

Language of Statistics:

Statistics is about collecting information, organize them, graph them, process them, and draw conclusion from them.

TWO Branches:

1) Descriptive:

Collect information and do various things with them.

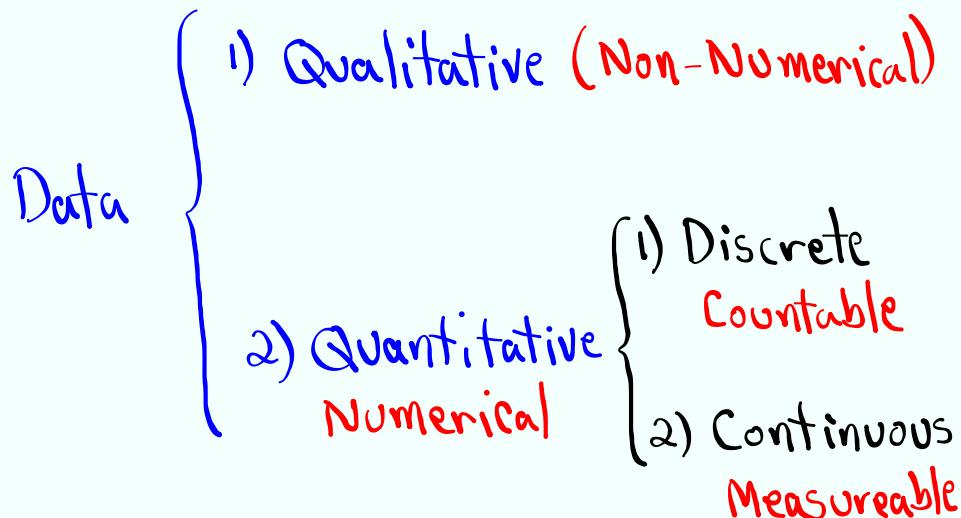
2) Inferential

Draw conclusion from descriptive statistics.

Jan 6-5:23 PM

Population Entire field of interest
Every, all

Sample Information Collected randomly
from Population.


Randomly taken from Pop.

Population \longleftrightarrow Parameter

Sample \longleftrightarrow Statistic

Jan 6-5:28 PM

Data → Information Collected

Jan 6-5:31 PM

Level of measurement :

1) Nominal (Names, No meaningful order)

2) Ordinal (Order is meaningful)

3) Ratio (You can make a meaningful ratio)

Small drink 10 oz

Large " 20 oz

4) Interval (Range of Values)

Jan 6-5:36 PM

How to collect data:

1) Systematic every k th item Selected

2) Stratified Divide into groups
and few selected from
each group

Males \in Females

2 M 3 F

3) cluster

Divide into groups

Some groups are Selected

Least reliable
4) Random or
Convenience

Collect data from all
members of Selected
groups.

Jan 6-5:41 PM

I Surveyed

100 Freshmen, 150 Sophomore, 75 Jrs.,
and 25 Srs. from Cal Poly Pomona.

Stratified

College offers 500 sections of classes in
winter 2026.

I randomly selected 50 sections,
and ask all students to complete a
Survey.

cluster

Your cousin told you to take my class.

Random or Convenience

Jan 6-5:49 PM

Experiment	VS.	Observation
Take action and See the result		No action taken but You notice changes.

Simple Random Sample

All observation, All data elements
have same chance to be
taken.

SG 2 ✓

Jan 6-5:54 PM

A data Set has a minimum of 20
and max. of 80.

$$\text{Range} = \text{Max} - \text{Min} = 80 - 20 = 60$$

$$\text{Midrange} = \frac{\text{Max} + \text{Min}}{2} = \frac{80 + 20}{2} = 50$$

Possible error

$$80 + 20 \div 2 \rightarrow 90$$

$$(80 + 20) \div 2 \rightarrow 50$$

Jan 6-6:16 PM

I randomly selected 5 quizzes, here are the scores

3 5 8 8 9

Sample Size $n = 5$

Max = 9, Min = 3

Range = Max - Min = 9 - 3 = 6

Midrange = $\frac{\text{Max} + \text{Min}}{2} = \frac{9+3}{2} = 6$

Mode (Data element with highest frequency) 8

Median (Data element in the middle after data is sorted)
8

Jan 6-6:19 PM

$$\sum x = 3 + 5 + 8 + 8 + 9 = 33$$

Sum of data elements

$$\sum x^2 = 3^2 + 5^2 + 8^2 + 8^2 + 9^2 = 243$$

Sum of squares of data elements

Compute $\frac{\sum x}{n} = \frac{33}{5} = 6.6$

Compute
$$\frac{n \sum x^2 - (\sum x)^2}{n(n-1)}$$

 $= \frac{5 \cdot 243 - 33^2}{5(5-1)} = \frac{126}{20} = 6.3$

Find $\sqrt{\text{Last answer}} = \sqrt{6.3} \approx 2.51$

Jan 6-6:24 PM

Consider the Sample below

2 4 6 8 10 12

1) $n = 6$

2) $\text{Max} = 12, \text{Min} = 2$

3) $\text{Range} = \text{Max} - \text{Min} = 12 - 2 = 10$

4) $\text{Midrange} = \frac{\text{Max} + \text{Min}}{2} = \frac{12 + 2}{2} = 7$

5) Mode None

6) Median = $\frac{6+8}{2} = 7$

Jan 6-6:30 PM

7) $\sum x = 2 + 4 + 6 + 8 + 10 + 12 = 42$

8) $\sum x^2 = 2^2 + 4^2 + 6^2 + 8^2 + 10^2 + 12^2 = 364$

9) Compute $\frac{\sum x}{n} = \frac{42}{6} = 7$

10) Compute $\frac{n \sum x^2 - (\sum x)^2}{n(n-1)} = \frac{6 \cdot 364 - 42^2}{6(6-1)}$

11) Find $\sqrt{\text{Last Answer}} = \sqrt{14} = \frac{420}{30} = 14$

$= \sqrt{14} \approx 3.742$

Jan 6-6:35 PM

We organize data in a freq. table.

class limits	Class Bndrs	class MPl	class F	Cum. F	Rel. F	% F

To make this table, we need to have
of classes.

$$\text{class width} = \frac{\text{Range}}{\text{# of classes}}$$

If decimal \rightarrow Always round-up.

If whole \rightarrow Always add 1.

Jan 6-6:41 PM

I randomly selected 25 exams, min.

Score was 60, Max. Score was 100.

$$n = 25 \quad \text{Max} = 100 \quad \text{Min} = 60$$

$$\text{Range} = \text{Max} - \text{Min} = 40$$

$$\text{Midrange} = \frac{\text{Max} + \text{Min}}{2} = \frac{100 + 60}{2} = 80$$

Find class width if we wish to have

a) 3 classes $CW = \frac{\text{Range}}{3} = \frac{40}{3} = 13.\bar{3}$ [CW=14]

b) 4 classes $CW = \frac{\text{Range}}{4} = \frac{40}{4} = 10$ [CW=11]

c) 5 classes $CW = \frac{\text{Range}}{5} = \frac{40}{5} = 8$ [CW=9]

Jan 6-6:45 PM

Consider the freq. table below

class limits	class BNDR	class MP	class F	Cum. F	Rel. F	%
18 - 28	17.5 - 28.5	23	7	7	.35	35%
29 - 39	28.5 - 39.5	34	8	15	.40	40%
40 - 50	39.5 - 50.5	45	5	20	.25	25%

$\text{class MP} = \frac{\text{Add class limits}}{2}$
 $\text{Rel. F} = \frac{f}{n} = \frac{f}{20}$
 $n = 20$
 $[W=11] \checkmark$
 $28 \uparrow 29$
 we can draw

1) Bar chart 3) Ogive 5) Pie chart
 2) Histogram 4) Freq. Polygon

Jan 6 6:51 PM